Variations on a Theme: Antennal Lobe Architecture across Coleoptera
نویسندگان
چکیده
Beetles comprise about 400,000 described species, nearly one third of all known animal species. The enormous success of the order Coleoptera is reflected by a rich diversity of lifestyles, behaviors, morphological, and physiological adaptions. All these evolutionary adaptions that have been driven by a variety of parameters over the last about 300 million years, make the Coleoptera an ideal field to study the evolution of the brain on the interface between the basic bauplan of the insect brain and the adaptions that occurred. In the current study we concentrated on the paired antennal lobes (AL), the part of the brain that is typically responsible for the first processing of olfactory information collected from olfactory sensilla on antenna and mouthparts. We analyzed 63 beetle species from 22 different families and thus provide an extensive comparison of principal neuroarchitecture of the AL. On the examined anatomical level, we found a broad diversity including AL containing a wide range of glomeruli numbers reaching from 50 to 150 glomeruli and several species with numerous small glomeruli, resembling the microglomerular design described in acridid grasshoppers and diving beetles, and substructures within the glomeruli that have to date only been described for the small hive beetle, Aethina tumida. A first comparison of the various anatomical features of the AL with available descriptions of lifestyle and behaviors did so far not reveal useful correlations. In summary, the current study provides a solid basis for further studies to unravel mechanisms that are basic to evolutionary adaptions of the insect olfactory system.
منابع مشابه
A 4-dimensional representation of antennal lobe output based on an ensemble of characterized projection neurons.
A central problem facing studies of neural encoding in sensory systems is how to accurately quantify the extent of spatial and temporal responses. In this study, we take advantage of the relatively simple and stereotypic neural architecture found in invertebrates. We combine standard electrophysiological techniques, recently developed population analysis techniques, and novel anatomical methods...
متن کاملCoevolution of generalist feeding ecologies and gyrencephalic mushroom bodies in insects.
Here we demonstrate the independent acquisition of strikingly similar brain architectures across divergent insect taxa and even across phyla under similar adaptive pressures. Convoluted cortical gyri-like structures characterize the mushroom body calyces in the brains of certain species of insects; we have investigated in detail the cellular and ecological correlates of this morphology in the S...
متن کاملSpatial and temporal organization of ensemble representations for different odor classes in the moth antennal lobe.
In the insect antennal lobe, odor discrimination depends on the ability of the brain to read neural activity patterns across arrays of uniquely identifiable olfactory glomeruli. Less is understood about the complex temporal dynamics and interglomerular interactions that underlie these spatial patterns. Using neural-ensemble recording, we show that the evoked firing patterns within and between g...
متن کاملDose-response characteristics of glomerular activity in the moth antennal lobe.
Odours are represented as unique combinations of activated glomeruli in the antennal lobes of insects. Receptor neurons arborizing in the glomeruli are not only qualitatively selective, but in addition respond to variations in stimulus concentration. As each glomerulus likely represents a single receptor neuron type, optical recordings of calcium changes in insect antennal lobes show how concen...
متن کاملResponse variability is correlated across multiple projection neurons in the antennal lobe of the locust 348
Response variability is correlated across multiple projection neurons in the antennal lobe of the locust
متن کامل